使用PAI深度学习tensorflow读写OSS教程

在PAI上, 使用TensorFlow读写OSS文件

作者: 万千钧

转载需注明出处

本文适合有一定TensorFlow基础, 且准备使用PAI的同学阅读

目录

    1. 如何使用PAI上读取OSS数据

    2. 如何使用PAI上写入数据到OSS

    3. 如何减少读取的费用开支

    4. 使用OSS需要注意的问题

1. 在PAI上读取数据

Python不支持读取oss的数据, 故所有调用 python Open(), os.path.exist() 等文件, 文件夹操作的函数的代码都无法执行.

Scipy.misc.imread(), numpy.load() 等

那如何在PAI读取数据呢, 通常我们采用两种办法.

如果只是简单的读取一张图片, 或者一个文本等, 可以使用tf.gfile下的函数, 具体成员函数如下

tf.gfile.Copy(oldpath, newpath, overwrite=False) # 拷贝文件
tf.gfile.DeleteRecursively(dirname) # 递归删除目录下所有文件
tf.gfile.Exists(filename) # 文件是否存在
tf.gfile.FastGFile(name, mode='r') # 无阻塞读写文件
tf.gfile.GFile(name, mode='r') # 读写文件
tf.gfile.Glob(filename) # 列出文件夹下所有文件, 支持pattern
tf.gfile.IsDirectory(dirname) # 返回dirname是否为一个目录
tf.gfile.ListDirectory(dirname) # 列出dirname下所有文件
tf.gfile.MakeDirs(dirname) # 在dirname下创建一个文件夹, 如果父目录不存在, 会自动创建父目录. 如果
文件夹已经存在, 且文件夹可写, 会返回成功
tf.gfile.MkDir(dirname) # 在dirname处创建一个文件夹
tf.gfile.Remove(filename) # 删除filename
tf.gfile.Rename(oldname, newname, overwrite=False) # 重命名
tf.gfile.Stat(dirname) # 返回目录的统计数据
tf.gfile.Walk(top, inOrder=True) # 返回目录的文件树

具体的文档可以参照这里(可能需要翻墙)

如果是一批一批的读取文件, 一般会采用tf.WholeFileReader() 和 tf.train.batch() 或者 tf.train.shuffer_batch()

接下来会重点介绍常用的 tf.gfile.Globtf.gfile.FastGFile, tf.WholeFileReader() 和 tf.train.shuffer_batch()

读取文件一般有两步

    1. 获取文件列表

    2. 读取文件

如果是批量读取, 还有第三步

    3. 创建batch

从代码上手: 在使用PAI的时候, 通常需要在右侧设置读取目录, 代码文件等参数, 这些参数都会通过–XXX的形式传入

tf.flags可以提供了这个功能

import tensorflow as tf
import os
FLAGS = tf.flags.FLAGS
# 前面的buckets, checkpointDir都是固定的, 不建议更改

tf.flags.DEFINE_string('buckets', 'oss://XXX', '训练图片所在文件夹')
tf.flags.DEFINE_string('batch_size', '15', 'batch大小')

# 获取文件列表

files = tf.gfile.Glob(os.path.join(FLAGS.buckets,'*.jpg')) # 如我想列出buckets下所有jpg文件路径

接下来就分两种情况了

        1. (小规模读取时建议) tf.gfile.FastGFile()

for path in files:
    file_content = tf.gfile.FastGFile(path, 'rb').read() # 一定记得使用rb读取, 不然很多情况下都会报错
    image = tf.image.decode_jpeg(file_content, channels=3) # 本教程以JPG图片为例

        2. (大批量读取时建议) tf.WholeFileReader()

reader = tf.WholeFileReader()  # 实例化一个reader
fileQueue = tf.train.string_input_producer(files)  # 创建一个供reader读取的队列
file_name, file_content = reader.read(fileQueue)  # 使reader从队列中读取一个文件
image = tf.image.decode_jpeg(file_content, channels=3)  # 讲读取结果解码为图片
label = XXX  # 这里省略处理label的过程
batch = tf.train.shuffle_batch([label, image], batch_size=FLAGS.batch_size, num_threads=4,
                               capacity=1000 + 3 * FLAGS.batch_size, min_after_dequeue=1000)

sess = tf.Session()  # 创建Session
tf.train.start_queue_runners(sess=sess)  # 重要!!! 这个函数是启动队列, 不加这句线程会一直阻塞
labels, images = sess.run(batch)  # 获取结果     

        解释下其中重要的部分
            tf.train.string_input_producer, 这个是把files转换成一个队列, 并且需要 tf.train.start_queue_runners 来启动队列
            tf.train.shuffle_batch 参数解释
            batch_size 批大小, 每次运行这个batch, 返回多少个数据
            num_threads 运行线程数, 在PAI上4个就好
            capacity 随机取文件范围, 比如你的数据集有10000个数据, 你想从5000个数据中随机取, capacity就设置成5000.
            min_after_dequeue 维持队列的最小长度, 这里只要注意不要大于capacity即可

 

如果遇到不得不使用第三方库的情况:

    如读取pkl、npy、tiff可以使用tf.gfile.Copy(FLAGS.buckets,’./文件名’)从OSS拷贝到运行时目录 (‘./’) , 然后用直接用第三方库读取就可以了

2. 文件写入

1.直接使用tf.gfile.FastGFile()写入

tf.gfile.FastGFile(FLAGS.checkpointDir + 'example.txt', 'wb').write('hello world')

2. 通过tf.gfile.Copy()拷贝

tf.gfile.Copy('./example.txt', FLAGS.checkpointDir + 'example.txt')

通过这两种方法, 文件都会出现在 ‘输出目录/model/example.txt’ 下

3.费用开支

这里只讨论读取文件所需要的费用开支

原则上来说, PAI不跨区域读取OSS是不收费的, 但是OSS的API是收费的. PAI在使用 tf.gile.Glob 的时候 会产生GET请求, 在写入 tensorboard 的时候, 也会产生PUT请求. 这两种请求都是按次收费的, 具体价格如下

标准型单价: 0.01元/万次

低频访问型单价: 0.1元/万次

归档型单价: 0.1元/万次

当数据集有几十万图片, 通过 tf.gile.Glob 一次就需要几毛钱. 所以减少费用开支的方法就是减少GET请求次数

这里给出几种解决思路

    1最好的解决思路, 把所有会使用到的数据, 一并上传传到OSS, 然后使用tensorflow拷贝到运行时目录, 最后通过tensorflow读取, 这样是最节省开支的.

 2. 通过tfrecords, 在本地, 提前把几十上百张图片通过tfrecords存下来, 这样读取的时候可以减少GET请求


    3. 把训练使用的图片随着代码的压缩包一起传上去, 不走OSS读取

种方法都可以显著的减少开支. 

4.使用中需要注意的

事实上, 每次读取传过来的地址就是 oss://你的buckets名字/XXX, 本以为不需要在PAI界面上 设置, 直接读取这个目录就好, 事实上并不如此.

PAI没有权限读取不在数据源目录和输出目录下的文件, 所以在使用路径前, 确保他们已经在控制台右侧设置过.

QQ20170731-151618@2x

另外如果需要写入文件到OSS, 可以使用 tf.gfile.fastGFile(‘OSS路径’, ‘wb’).write(‘内容’)

OSS路径推荐使用

FLAGS.checkpointDir

FLAGS.summaryDIr

这样的形式传入, 经过测试好像也只有这两个目录下有写权限

FLAGS.buckets下所有文件夹都有读写权限

发表评论

电子邮件地址不会被公开。 必填项已用*标注